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ABSTRACT
Transformer-based language models for automatic code comple-
tion have shown great promise so far, yet the evaluation of these
models rarely uses real data. This study provides both quantitative
and qualitative assessments of three public code language mod-
els when completing real-world code. We first developed an open-
source IDE extension, Code4Me, for the online evaluation of the
models. We collected real auto-completion usage data for over a
year from more than 1200 users, resulting in over 600K valid com-
pletions.Thesemodels were then evaluated using six standardmet-
rics across twelve programming languages. Next, we conducted a
qualitative study of 1690 real-world completion requests to identify
the reasons behind the poor model performance. A comparative
analysis of the models’ performance in online and offline settings
was also performed, using benchmark synthetic datasets and two
masking strategies.

Our findings suggest that while developers utilize code com-
pletion across various languages, the best results are achieved for
mainstream languages such as Python and Java. InCoder outper-
formed the other models across all programming languages, high-
lighting the significance of training data and objectives. Our study
also revealed that offline evaluations do not accurately reflect real-
world scenarios. Upon qualitative analysis of the models’ predic-
tions, we found that 66.3% of failures were due to models’ limita-
tions, 24.4% occurred due to inappropriate model usage in a de-
velopment context, and 9.3% were valid requests that developers
overwrote. Given these findings, we propose several strategies to
overcome the current limitations. These include refining training
objectives, improving resilience to typographical errors, adopting
hybrid approaches, and enhancing implementations and usability.
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Automatic CodeCompletion, Transformers, LanguageModels, IDE,
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1 INTRODUCTION
Therising popularity of transformer-based LanguageModels (LMs)
has significantly impacted development practices, with more de-
velopers increasingly adopting these models for code completion.
Unlike traditional native auto-completions, LMs work well in pre-
dicting entire lines of code [1–12]. Despite their advantages, LMs
for code are not without flaws. Many LMs proposed in research
are complex and accurate on synthetic data [13], but only a handful
ever make it to integration in products, highlighting a gap between
theoretical advancement and practical application [7, 14–16]. A
few studies have analyzed these models in online settings [17, 18],
revealing that their performance may decrease in such environ-
ments. However, these explorations often involve proprietarymod-
els and code in specialized scenarios, and they fall short of provid-
ing a detailed analysis of the errors. Thus, a more thorough, com-
parative, and open evaluation of LMs for code, especially in real-
world contexts, is critical for improving their effectiveness.

The goal of this study is to systematically evaluate three pub-
lic completion models, namely InCoder [2], UniXcoder [3], and
CodeGPT [19] in a real-world coding setup. We released Code4Me,
an open-source IDE extension, to conduct online evaluations. Over
the course of a year, we gathered auto-completion usage data from
more than 1200 users, leading to about 2M completions. We exam-
ine the three models across twelve programming languages com-
monly used in the literature [13, 20, 21] using six standard met-
rics. Additionally, we carry out a qualitative investigation using
an open coding process on 1690 real completion requests to iden-
tify the causes of poor model performance. Lastly, we conduct a
comparison of the models’ performance in both online and offline
settings, employing benchmark synthetic datasets [13] and two dis-
tinct masking strategies used in literature [1, 21].

Analysis of themodels’ online use reveals their application across
diverse programming languages. However, performance varies by
language. Models excel in common languages like Python and Java
but face challenges with less-represented languages like Rust and
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Scala. Furthermore, InCoder exceeds its competitors across all lan-
guages, highlighting the impact of training data and more aligned
training objectives as it was trained for code infilling. Our analysis
identified 18 types of rejections by developers. Often, the models’
design limited their accuracy or developers expected predictions
beyond the models’ scope. We also noted a tendency of developers
to reject correct predictions. Lastly, we found a mismatch between
model performance on synthetic and real-world data. This is likely
due to the different contexts in generating predictions for incom-
plete code, versus the complete code used in training.

Based on our findings, we recommend that future research fo-
cus on (1) including a broader range of programming languages in
both the training and evaluation phases to achieve more consistent
performance, (2) refining model training objectives to more accu-
rately reflect actual developer usage, and (3) improving assistant
implementations and usability as well as reducing unnecessary in-
vocations. Our contributions are as follows.

• Code4Me, an open-source IDE extension that provides auto-
completions using three code LMs, with a substantial user
base (+1200) and nearly 2M completions,

• Quantitative online and offline evaluation of themodels across
twelve programming languages (+600K valid completions),

• An analysis of models’ limitations using 1690 completions
resulting in a taxonomy of 18 causes of poor performance,

• Public source code, dataset for offline evaluation, and open
coding data for the qualitative analysis [22].

2 BACKGROUND AND RELATED WORK
2.1 Transformer-based Language Models
Transformer-based LMs require substantial datasets for initial pre-
training and potential fine-tuning for specific tasks. Common ar-
chitectures are encoder-only transformers such as BERT [23, 24],
decoder-only transformers such asGPT [25–27], or encoder-decoder
models such as T5 [28]. Popular software engineering downstream
taskswith transformer-basedmodels are code interpreting and rep-
resentation [4, 5, 9, 29, 30], source code and software documenta-
tion [2, 4, 5, 31, 32], and code generation [1, 2, 4–7, 10, 13, 33].

2.2 Automatic Code Completion
Auto-completion facilitates programming by generating predictive
text that aligns with a developer’s programming context.

Granularity level: Completion occurs at varying degrees of
granularity. At the basic level, next-token prediction is applied
where themodel predicts the subsequent code token [1, 8, 9, 34–36].
In line completion, a model is employed to complete a line of code
given a specific context [1, 3, 7, 19]. In the most extensive form of
code completion, block completion, models generate entire blocks,
functions, or classes [2, 3, 14].

Completion Scenario: Furthermore, code completion can be
characterized as a left-to-right task. In this approach, the model
has visibility of only the code context preceding the cursor at the
point where code completion is invoked. Alternatively, it can be
viewed as an editing task where the model leverages both the left
and right context of a trigger point.This allows the model to gener-
ate a span of code, which can commence and conclude anywhere
within a line of code, and can encompass multiple lines of code [2,

4, 34]. Our tool incorporates left-context-only models, CodeGPT
and UniXcoder [3], as well as InCoder [2], a model using both left
and right contexts.

2.3 Empirical Studies on Code Completion
Models’ performance in online settings: Proksch et al. [37] con-

ducted an evaluation of a method-call recommendation system us-
ing a dataset derived from IDE interactions and identified that preva-
lent assessments using synthetic datasets overlook changes in con-
text. In 2019, Hellendoorn et al. [38] analyzed traditional next-token
prediction models (e.g., n-grams and recurrent neural networks)
using a real-world dataset from observing 66 developers’ usage
over the span of two weeks resulting in 15K completions. The re-
sults indicated that synthetic benchmarks lack sufficient represen-
tation. Aye et al. [18] examined neural code completion models
trained on live code versus committed code. They discovered a
notable decrease in model performance when evaluating the com-
pletions collected from real usage. Additionally, they observed a
higher usage of out-of-vocabulary tokens in predicting comple-
tions compared to masked tokens. In a recent study, Bibaev et
al. [17] improved the rankings of auto-completions in IDE’s by
training models on anonymized data.

Models’ performance in offline settings: Maurasoiu et al. [39] in-
vestigated the usage of code completion in the Dart Editor by six
professional software developers. Upon analyzing this data, they
identified certain interaction patterns. Key findings hint that a large
portion of code completions are not accepted by users, and code
completion is frequently employed as a debugging tool. Ciniselli
et al. [34, 35] evaluated the proficiency of two LMs, T5 [28] and
RoBERTa [24], in completing code at three levels of granularity,
namely single-token, line, and block completion for Java methods
andAndroid appmethods in an offline setting. Although T5 outper-
formed RoBERTa, the authors observed that these models’ efficacy
in predicting longer sequences is restricted. The outcomes of the
study are specific to Java andmay not be generalizable to gradually-
or dynamically-typed languages. In another empirical study, Van
Dam et al. [40] used the impact of contextual data on the perfor-
mance of UniXcoder, CodeGPT, and InCoder at two granularity
levels (token and line completion), and two languages (JavaScript
and TypeScript). The results indicated that all models performed
slightly better when type annotations were omitted or when multi-
line comments were present. These observations suggest that care
should be taken when training, fine-tuning, or selecting such mod-
els to ensure they align with the intended data and application.

Developers’ expectations of models. Recently, Wang et al. [41]
surveyed 599 programmers to understand their expectations of code
completion models. They discovered that 81% of the respondents
used token-level predictions to predict accurate identifier names
and APIs. Additionally, 32% of participants utilized statement-level
predictions, with 46% of those being related to API completions
and 45% for editing the current line of code. The survey also re-
vealed that 80% of the participants agreed that code completion
tools should support identifier completions, API recommendations,
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and path completions. Most recently, Ciniselli et al. [42] investi-
gated the needs of software developers in relation to code recom-
mendation systems, surveying 80 developers and categorized 70
requirements for these systems. Notably, developers value mod-
ifiable code over creating new one, given it is time-efficient. An
intuitive user interface in the recommendation system was also
deemed critical. Developers demonstrated a willingness to accept
longer predictions, given their high level of trust in the system’s
accuracy. The system’s capacity to recognize not only the current
project but also past ones the developer has worked on was also
highlighted. Finally, the use of familiar code expressions was found
to increase the system’s perceived utility.

Our study contribution. We assess line completion models’ per-
formance, specifically left-to-right and editing models, in both on-
line and offline settings. We enrich the limited practical assess-
ments bymethodically evaluating three recent, public transformer-
based LMs for code and conducting an in-depth qualitative analy-
sis to comprehend why developers reject completions, leading to a
broad taxonomy of such reasons. Moreover, the scope of Code4Me
is much larger than existing work, encompassing over 2M com-
pletions by providing service to 1,200 users for more than a year.
Finally, contrary to prior research focusing on developers’ expec-
tations from optimal code recommendation systems, our study ex-
plores these models’ actual performance in practice. Our work lays
the foundation for using the failure causes we have identified in
tandem with developer expectations to build stronger, more effi-
cient completion systems.

3 RESEARCH QUESTIONS
In this study, our goal is to assess howwell code models perform in
completing lines of code, both in online and offline scenarios. We
focus on line completion as it strikes a good balance between ex-
tremely short (token prediction) and excessively long completions
(entire block or function completions). We have formulated the fol-
lowing five Research Questions (RQs) to thoroughly evaluate LMs
for code both quantitatively and qualitatively.

RQ1: Based on real-world completions, how accurate are
the models? Using Code4Me, we conduct an online evaluation
to quantitatively assess the accuracy of three state-of-the-art LMs’
predictions. We explore the frequency developers accept model
predictions, their accuracy compared to the ground truth, and the
variation in performance across different programming languages.

RQ2:What are themost common completion trigger points,
and how do the models perform on those? Rather than be-
ing always on, auto-completion is more effective at specific trigger
points [1, 38]. In RQ2, we identify the most commonly used trigger
points data and assess how well models perform on them.

RQ3: In practice, what are common scenarios in which
auto-completion is invoked? Next, we study how developers
utilize auto-completion while coding, i,e., traditional left-to-right
completion, editing, etc.

RQ4: Based on real-world completions, what are the com-
mon causes of poor results? To understand why a model un-
derperforms, we manually examine a subset of completions and
identify causes of inaccurate predictions and developer rejection.

Figure 1: Code editors and models communication pipeline

Figure 2: Completion sample (Code4Me PyCharm plugin)

RQ5: How does an online evaluation differ from offline
ones? Finally, we conduct an offline evaluation to explore how
auto-completion performance varies for random and trigger mask-
ing and how these measurements compare to real-world scenarios.

4 CODE4ME
To gather data for answering our research questions, we devel-
oped two open-source extensions for IntelliJ and VS Code called
Code4Me to test auto-completion models in an online setting. The
extensions provide completions generated by three LMs and cap-
ture how developers use these completions. Code completion pop-
ups are triggered upon pressing the completion key-bind or after
typing one of the following trigger points [1, 22] as follow.
await assert raise del lambda yield return while for if
elif else global in and not or is with except . + - * /
% ** << >> & | ^ == != <= >= += -= = < > ; , [ ( { ~

We then request a completion using the remote API over HTTPS,
which returns suggestions from all available models, and present
them to developers. We utilize a standard client-server setup with
an inference server running the models and a client serving as
the editor for completions. Figure 1 presents the communication
pipeline between the code editors, extensions, and models. Note
that Code4Me competes against all completion systems (both na-
tive and non-native) in the developer’s preferred code editor.

Server. We use a server with two GeForce GTX 2080 Ti GPUs
with 22GB of memory in total to host the models. The extensions
automatically make HTTPS requests to the server to receive the
models’ predictions. The server then feeds inputs to the models,
stores relevant data, and returns the completions to the extension.

Clients. The clients are the local IntelliJ and VS Code extensions
installed on developers’ systems. Our primary requirements included
(1) user-friendly operation, (2) displaying several predictions at
once, and (3) integrating smoothly with the IDE without affect-
ing its native completions. Therefore, both clients incorporate new
completions into the IDE’s standard suggestionwindow, illustrated
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in Figure 2. This strategy facilitates usage and enhances the ex-
isting code completions within the IDEs. Additionally, it allows
for the presentation of multiple completions simultaneously. To
minimize bias, we shuffle the unique completions from the three
models before sending them to the client where they appear in a
pop-up list, each marked with the same logo. While we ensure the
presence of our completions in the list by giving them high pri-
ority in the completion provider API, it is the IDE that ultimately
organizes and displays all native and non-native completions and
presents them to the users. For instance, user preferences such as
IntelliJ’s “Sort completions based on ML”, can influence the final
order. During the initial phase and after collecting user feedback,
we concentrated on enhancing the speed of completion generation
and resolving edge cases that impacted the plugin’s usability.

IntelliJ Extension: We built this extension by extending the
existing extension template from JetBrains [43] to show custom
completions in the completion window. This window shows all
code suggestions to the user. The extension also detects trigger
points and then prompts the models for completion. VS Code Ex-
tension: We developed the VS Code Extension using its API and
an npm package that generates a basic extension [44]. We then ex-
tend this by adding auto-completion whenever the shortcut is used
or when a trigger point is detected.

Telemetry. For each completion request, Code4Me collects its
timestamp, trigger point, programming language, models’ predic-
tions,model inference time, user-selected prediction (empty in case
of no selection), character length of left- and right-contexts, trig-
ger kind (manual or automatic invocation), IDE, extension version,
and finally the ground truth (the final line written by the devel-
oper after 30 seconds). The ground truth helps evaluate predic-
tions based on the developer’s final code use. We store the context
length in characters because tokenizing for each request puts too
much strain on the server/client. Additionally, users can opt-in to
allow for the collection of development context (i.e., model input)
to be used in RQ3 and RQ4.

Models. Weuse three recent and publicly available LMs for code:
InCoder, UniXcoder, and CodeGPT. InCoder [2] is an LM for code
trained on natural language and code from GitHub, GitLab, and
Stack Overflow. Notably, InCoder is trained using causal mask-
ing [45], which enables it to use both left and right code contexts.
UniXcoder [3] is an LM trained on natural language and source
code using masked language modeling [23, 46], unidirectional lan-
guage modeling [25], and denoising [28]. CodeGPT [19] is a GPT-
2 [26] based model first introduced by Lu et al.[19], who created
several GPT2-based models for code-related tasks. For our study,
we create a multilingual version of CodeGPT by fine-tuning the
pre-trained GPT-2 model checkpoint [26] on the training set of
the CodeSearchNet dataset [20], which UniXcoder was also trained
on [3]. This is a benchmark dataset widely used for fine-tuning
models for various code-related tasks [3, 4, 9, 19, 29]. CodeSearch-
Net contains functions and their documentation in six program-
ming languages: Go, Java, JavaScript, PHP, Python, and Ruby. We
use a learning rate of 1.37e-4, a batch size of 2, and the AdamW
optimizer with a weight decay of 0.01 for 10 epochs when fine-
tuning CodeGPT. Note that we performed no further training on
UniXcoder and InCoder, as these models were already trained on

Table 1: Statistics on Datasets

Online Offline
Language #Valid Completions Random Trigger Point

Python 219,822 585 598
Java 104,157 902 898
TypeScript 72,492 897 882
PHP 69,215 712 709
JavaScript 55,550 564 548
Kotlin 27,353 - -
C++ 15,742 708 709
Rust 14,063 838 836
C# 12,971 928 916
Go 10,199 757 756
C 3,626 581 579
Scala 878 971 969
Ruby - 857 848
Total 606,068 9,300 9,248

multilingual code. Lastly, due to latency concerns, for UniXcoder
and CodeGPT, we set the beam width for decoding to 1. InCoder
uses top-p nucleus sampling as opposed to beam search, hence for
InCoder, we set 𝑝 = 0.95. Additionally, to increase the speed a cus-
tom stopping condition was added to ensure models only complete
the line and no extra tokens.

5 EXPERIMENTAL SETUP
5.1 Quantitative Analysis
5.1.1 Models and Data. In the offline setting, we use the Unseen
dataset [13] to test the line completion performance of the three
LMs.This is a curated dataset containing source code files in twelve
different languages: C, C#, C++, Go, Java, JavaScript, PHP, Python,
Ruby, Rust, Scala, and TypeScript. This dataset was made specifi-
cally to evaluate numerous LMs for code on data they had not been
trained on. We further de-duplicate the Unseen dataset by remov-
ing repositories that are already in the training data of the models.
We had previously acquired the list of repositories from the In-
Coder authors.This process removes 29 repositories out of the total
of 293 repositories in the Unseen dataset. We use two strategies for
creating the test sets; random and trigger masking. First, we select
random positions to perform code completion, masking up to the
end of the line. The selected positions are always at a whitespace
character. Second, we simulate user behavior by selecting only line
completions that begin at a trigger point. Both cases do not allow
auto-completions at the beginning or end of a line. When gener-
ating our synthetic trigger-points, we limit the number of comple-
tions per file to 10 to prevent our results from being dominated by
large files, ensuring diversity in our test samples. Table 1 displays
the number of test samples per language.

5.1.2 Evaluation Metrics. For the quantitative analysis (RQ1, RQ2,
RQ5), we use a diverse set of standard evaluation metrics [47],
namely acceptance rate, ROUGE-L, BLEU4, METEOR, Edit Simi-
larity, and Exact Match. Due to space limitations, we only report
ROUGE-L here as it has been shown to align more with human
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judgment [48]. Additional results are available in the replication
package [22]. Several of the chosen metrics necessitate the conver-
sion of a given piece of code into a token array. For consistency
in results, we utilize a uniform tokenizer, specifically the InCoder
tokenizer, across all samples given its extensive exposure to numer-
ous programming languages. The employment of the InCoder tok-
enizer does not confer any benefit to the InCoder model, thereby
preserving the fairness of the comparison. Acceptance Rate is
the proportion of the number of completions accepted by a user
to the number of completions presented to them. ROUGE-L is a
variant of ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) [49] which compares the tokenized ground truth with the pre-
diction, evaluating it based on the longest common sub-sequence
wherein each code token operates as a uni-gram. ROUGE-L cal-
culates and employs both precision and recall to determine an F1
score. Ground truth here means the tokens that the model aims to
predict. As tokens are notmasked in online settings, wewait 30 sec-
onds after offering predictions to establish ground truth.This delay
allows developers time to correct any flaws in the predictions.

5.2 Qualitative Analysis
With RQ3 and RQ4,we aim to gain deeper insights into the strengths
and weaknesses of LMs via a qualitative analysis of a subset of pre-
dictions generated by Code4Me in actual scenarios.

Sampling Data. This data is collected from Code4Me users who
consented. 1 By October 2022, Code4Me had stored about 29,000
valid completions with development contexts. Due to time and cost
constraints, we randomly sampled 2,117 files for manual analy-
sis. After an initial review, we refined the completions by exclud-
ing cases where the left and right contexts were mismatched, the
ground truth did not align with the context, or the model was ap-
plied to non-programming language tasks (like text documents or
settings). This process yielded a total of 1,690 files for labeling.

We annotated each completion from two aspects, usage type
(RQ3) and potential failure reasons (RQ4). To answer RQ3, we focus
on the left and right context of an invocationwithout looking at the
models’ predictions. This RQ is aimed at evaluating whether the
expectations of users (where the completion is called) align with
the training settings. Next, we identify potential reasons when a
completion fails. We store each completion in a file. These files in-
clude the left and right code contexts (relative to the trigger point),
models’ predictions, the trigger kind (manual or automatic), and
the associated IDE. Additionally, we demonstrate the ground truth,
representing the targeted code line after a 30-second interval, as
well as the user-selected prediction. Labelers employ these files to
assign fitting labels to each completion for all models.

5.2.1 Labeling Process. We used open coding and iteratively re-
fined a distinct set of labels for both RQ3 and RQ4. The entire
process, including defining labels, labeling samples, resolving con-
flicts, and creating the taxonomy, required about 540 person-hours.

For RQ3, two of the authors (referred to as 𝐿𝑖 ), developed a set
of potential labels for invoking auto-completion. These labels rep-
resent the circumstances under which each of the three models

1We have the approval of our institution’s Ethics Review Board to conduct the quali-
tative analysis of the development context.

was used. Then, two authors individually tagged each completion.
Upon completion of labeling, any conflict among the labels was
discussed between the labelers to achieve a consensus.

For RQ4, due to the diversity of potential failure reasons in com-
pletions, four authors undertook the process of formulating cate-
gories and assigning labels to data points. Initially, 𝐿1 and 𝐿2 inde-
pendently examined 440 randomly selected files (20% of a model’s
data). Following their individual analysis, they held a meeting to
form a preliminary set of potential labels together. This resulted in
22 labels. Subsequently, using this set, 𝐿3 and 𝐿4 engaged in individ-
ually examining another set of data points (a portion of CodeGPT
predictions). The annotators analyzed available data such as left
and right contexts, predictions, and ground truth. After the first it-
eration, annotators refined the label set to 20 labels, removing very
fine-grained labels as their representation could be sufficiently cov-
ered by the remaining labels. Both 𝐿3 and 𝐿4 kept refining the la-
bels iteratively until they finished the first model. Next, 𝐿3 and 𝐿4
had a discussion to resolve the conflicts, where several labels were
merged, removed, or new ones emerged, resulting in a total of 18 la-
bels. Following a second examination of the data, these labels were
solidified and allocated to all samples. The UniXcoder and InCoder
models underwent an identical iterative process, carried out by 𝐿3
and 𝐿4. Once again, the labels obtained from the previous model
were refined throughout this procedure, to provide a comprehen-
sive analysis of the prediction behavior demonstrated by these two
models.

Conflicts Resolution Process. In the labeling phase, each sample
was assigned an unrestricted number of labels from the annota-
tors. To reach a consensus, annotators discussed samples that had
at least one conflict and reduced the number of labels assigned
to each sample to a maximum of two, selected for their ability to
most accurately describe the error’s origin, as determined by the
experts.The process of assigning labels and resolving conflicts was
conducted four times, with the labels being updated each iteration.

6 RESULTS
In this section, we report both the quantitative and qualitative re-
sults of this study.

6.1 Statistics on Code4Me
We launched Code4Me in June 2022. As of July 2023, a total of 1,203
unique users have used the extensions, with 168 of these users
agreeing to share their context, thereby enabling us to conduct the
qualitative analysis of the predictions. Due to our strict privacy pol-
icy that ensures user anonymity, we do not gather any personal or
demographic information about our users. To limit abuse or con-
tamination of our data we rate limit code completion to 1,000 com-
pletions per hour.The tool has responded to 1,976,701 completions,
out of which 1,370,879 qualify for assessment. That is, we remove
completion requests where the ground truth is empty (when the
user did not write anything after calling the model), or the predic-
tions are empty. For the online evaluation, we base our language
selection on the large-scale evaluation study conducted by Xu et
al. [13]. However, our users did not request enough completions
for Ruby, so we replaced it with Kotlin. This selection results in
twelve programming languages with 1,308,606 total data points.
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Figure 3: ROUGE-L per language for all models (online)

Figure 4: Acceptance rate per language (online)

Table 1 presents the number of valid data points per programming
language.The IntelliJ extension generates 49.6% of the completions,
while 50.4% comes from the VS Code extension.

6.2 RQ1: Online Evaluation
Results onAll Valid Completion Requests. Figure 3 shows ROUGE-

L of Code4Me for each language. InCoder performs best in all lan-
guages, with UniXcoder and CodeGPT closely trailing in most lan-
guages. UniXcoder and CodeGPT were trained on the same code
dataset, and show similar performance. For instance, they both
struggle with Rust, as it was not in their training. InCoder, how-
ever, was trained on a larger, more varied dataset that includes
code understanding data such as Stack Overflow Q&A.

Acceptance Rate. Figure 4 presents the acceptance rate of mod-
els per language. On average, models achieve an acceptance rate
of 4.91%. The lower acceptance rate of our system compared to
the 10% in IntelliCode Compose can be attributed to various fac-
tors. IntelliCode Compose, during its launch, did not compete with
advanced completion systems like GitHub Copilot or customized
models trained on specific company or user data, which are preva-
lent now. In contrast, Code4Me competes with all existing com-
pletion systems within the user’s code editor. Additionally, Intelli-
CodeCompose dealswithmethod and argument completion, which

Figure 5: ROUGE-L per trigger point for all models (online)

are generally simpler than line completion. It is triggered only by
non-alphanumeric characters, whereas Code4Me also responds to
keywords.Moreover, IntelliCode Compose, havingmore resources,
employs awider beamwidth, hence, improving the accuracy. Among
models, InCoder has the highest score especially on Java, C#, and
Kotlin, while CodeGPT and UniXcoder both perform exceptionally
poorly on TypeScript and Rust. Note that a higher ROUGE-L score
does not always correlate with increased acceptance rates. For ex-
ample, Java has a higher acceptance rate than Python, despite sim-
ilar ROUGE-L scores. This disparity might be due to the differing
ease and verbosity of the languages. Python programmers might
find it quicker to type code themselves rather than waiting for
Code4Me, whereas the more verbose nature of Java makes the tool
more beneficial for Java programmers. For all valid completions,
ROUGE-L scores mostly range from 20 to 40. However, for accepted
completions, all models score between 50 to 80 on ROUGE-L across
most languages, indicating that even some accepted completions
require further edits. Note that the difference between a ROUGE-L
score of 50 and 80 is substantial. A score of 50 denotes moderate
accuracy, suggesting correct basic structure and content but with
significant gaps or errors. In contrast, a score of 80 reflects a high
accuracy, with the completion closely resembling the intended out-
put. More details are available in our public repository [22].

6.3 RQ2: Online Evaluation on Trigger Points
Of all completions, 83.4% come from automatic triggers set at spe-
cific trigger points. Figure 5 reports ROUGE-L scores per the 14
most frequently used trigger points for completion by Code4Me.
InCoder consistently surpasses UniXcoder and CodeGPT across
various trigger points. Notably, different performance is observed
between these triggers. For instance, the return trigger demon-
strates superior performance, potentially attributed to its position-
ing in a file where more contextually relevant data is available to
the models. In contrast, the / trigger performs worst for all models
which can be attributed to its ambiguous use in code (e.g., division,
comment denotation, and file paths).

6.4 RQ3: Usage Scenarios
For label assignment, we analyze only the location where the pre-
dictionwas triggered (left context, right context, and ground truth).



Language Models for Code Completion: A Practical Evaluation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 6: Auto-completion invocation: common scenarios

Figure 7: Top-level distribution of failure categories

This is to assess what the model would need to modify for a correct
prediction. Model predictions were exclusively evaluated for RQ4.
We identified three completion scenarios from the samples: (1) to
predict the rest of a line based on the left context while nothing is
written on the right side, (2) to partially complete a line when the
model needs to predict tokens up to other tokens on the same line,
and finally (3) to predict and modify the code written on the same
line, in order for the correct prediction to be valid. Two annotators
individually labeled all relevant files, reaching an agreement rate
of 82.1%. Most disagreements arose from determining whether a
line edit was necessary, which the labelers discussed to arrive at
a consensus. Figure 6 presents the percentage of these scenarios.
Conventional line completions stand out as the most prevalent
prediction scenario (48%). However, a model exclusively trained
for line completion would likely generate predictions that conflict
with the right context for the remaining 52% requests. Moreover, in
about 21% of situations, it would require modifications to the right
context. Hence, to align with developers’ needs, models should be
trained to make small edits to the surrounding context.

6.5 RQ4: Failure Categories
After resolving all conflicts, we collected 2,800 labels for CodeGPT
predictions, 2,701 labels for InCoder predictions, and 2,811 labels
for UniXcoder predictions. This results in 8,312 labels for all three
models. Utilizing these labels, we developed a taxonomy that en-
compasses all the assigned labels (Table 2). Figure 7, presents a
high-level summary of label frequency per model. Our analysis in-
dicates that completions are typically rejected due to user prefer-
ence or model errors. Model errors fall into two categories: model-
oriented and application-oriented.Model-oriented errors stem from
the model’s inherent limitations, while application-oriented errors
arise from a mismatch between how models are trained to assist
in development and how they are used by developers. Addition-
ally, there are cases where the model suggests accurate or valid
completions but the user prefers to override them.

6.5.1 Model-oriented. Themodel itself is a primary source of poor
predictions resulting in two main sub-categories of errors; token-
level and statement-level errors.

Token-level Errors. Errors at the token level occur when inaccu-
racies arise in completing variables, functions, types, and literals.

Table 2: Taxonomy of failure categories

Failure category plus label ID Count

Model-oriented Errors
Token Level

(ME-T1) Incorrect variable
(ME-T2) Incorrect function
(ME-T3) Incorrect literal
(ME-T4) Incorrect type

Statement Level
(ME-S1) Wrong parameter count
(ME-S2) Wrong semantics
Untimely termination

(ME-S3) Early termination
(ME-S4) Late termination

Rambled Outputs
(ME-S5) Looped repetition
(ME-S6) Copied input context

(ME-S7) Faulty syntax

5,511
3,835
1,435
1,162
1,130
108

1,676
613
352
318
205
113
249
171
78

144
Application-oriented Errors

(AE-1) Mid-token invocation
(AE-2) Insufficient context
(AE-3) Redundant invocation
(AE-4) Typographical errors in input

2,030
1,173
482
240
135

User-overridden Outputs
(UO-1) Correct but not accepted
(UO-2) Valid but not preferred
(UO-3) Accepted but required change

771
605
112
54

For all models, the largest class of errors pertains to predicting
variable names (ME-T1). In 28% of all files labeled with ME-T1, the
model was called after the initial letters were already typed by the
developer. Similarly, for 23% of all predictions labeled with ME-T2,
the model was called in the middle of the identifier. Furthermore,
we see a high correlation between ME-T1 and ME-T2, models that
fail to correctly predict function names will also fail to predict vari-
able names, and vice versa. Finally, in 14% of all ME-T2 labeled
cases, models also predicted the wrong number of parameters (ME-
S1). Incorrect literals (ME-T3) occur as frequently as ME-T2 but
they mostly occur in isolation.

Statement-level Errors. Errors that exceed mere single-token in-
accuracies and relate to a deeper comprehension of the language
or code, characterized by the prediction’s length, parameter count,
and complex syntax.

Number of Parameters. A common error is the incorrect predic-
tion of the number of parameters (ME-S1) especially in languages
such as JavaScript (and dialects) and HTML/CSS as they often re-
quire a large number of parameters, often describing attributes,
rather than variables. In 27% of appearances it co-occurs with an in-
correct function name, in 22% of all cases with an incorrect literal,
and in 20% of all cases with an incorrect variable. The parameter
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1 template <typename T> T setAttribute(const key_t &key, const T

&value, access_specifier_t accessSpecifier, bool isConstant){
2 if (¶

1 INCODER_PREDICTION: threadLock_setAttribute
2 UNIXCODER_PREDICTION: isConstant) {
3 CODEGPT_PREDICTION: isConstant)
4 GROUND_TRUTH: typeid(T) == typeid(key_t)) {
5 RIGHTCONTEXT: )

Figure 8: Rejected prediction: wrong semantics (ME-S2)

1 mine_nenerg = ['VALE3.SA', 'CSNA3.SA', 'GGBR3.SA', 'USIM3.SA']
2 indu_proces = ['SUZB3.SA', 'UNIP6.SA', 'SLCE3.SA', 'SMTO3.SA']
3 cons_civi¶

1 CODEGPT_PREDICTION: = ['CIVI.SA', 'CIVI.SA', 'CIVI.SA', 'CIVI.SA',

'CIVI.SA', 'CIVI.SA', 'CIVI.SA', 'CIVI.SA', 'CIVI.SA',
2 GROUND_TRUTH: l = ['EVEN3.SA', 'CYRE3.SA', ]

Figure 9: Rejected prediction: looped repetition (ME-S5)

values are frequently incorrect when predicting an excessive num-
ber of variables, as evidenced by ME-T1 and ME-T3 occurrences.
Additionally, the number of parameters is closely related to the
function name, as shown by the co-occurrence of the label ME-T2.

Wrong Semantics. Models make mistakes not only when com-
pleting tokens but also in the semantics of the statement they are
predicting (ME-S2). Boolean expressions are often mistaken for
function calls, or list comprehensions are predicted instead of in-
dexing an array. These are errors where the model did not under-
stand what the developer’s intent was. Figure 8 shows the predic-
tion of a variable instead of checking the equality of two types, as
the condition of the if statement. ME-S2 is correlated with ME-T1
(26%) and ME-T2 (25%) suggesting models select identifiers based
on the perceived semantics of the predicted statement.

Untimely Termination. LM generations can sometimes be too
brief or lengthy. Early termination (ME-S3) relates to missed func-
tion calls (24%) and variables (21%), wrong literals (16%), andwrong
number of parameters (13%). Similarly, models terminate late (ME-
S4) due to extra variables (20%), extra function calls (19%), toomany
parameters (18%), and when predicting literals (16%).

Rambled Outputs. In these cases, themodel falls into a repetitive
loop of producing the same few tokens (ME-S5) until it hits the
maximum allowable length, or echoes parts of the input context
(ME-S6), rendering the output nonsensical. Figure 9 shows an ex-
ample where the model completes the content of the array by repli-
cating one of the strings. Potential causes are common patterns of
coding or frequently-used token(s) being present in the context,
specific model settings, or use of a fallback when the model is fac-
ing difficulty in predicting an appropriate response. CodeGPT ex-
hibits fewer ME-S4 instances (28 files) compared to UniXcoder (35)
and InCoder (50).Qualitative analysis shows this issue occursmore
when the quality of input data is not very high. Furthermore, ME-
S5 occurs more when the model copies a literal (19%) from input
context.

1 a = int(input("enter the number to find 3 consecutive number: ")
2 if a % 3 == 0:
3 if a % 2 =¶

1 INCODER_PREDICTION: 0:
2 UNIXCODER_PREDICTION: 0:
3 CODEGPT_PREDICTION: 1:
4 GROUND_TRUTH: = 0:

Figure 10: Rejected prediction: faulty syntax (ME-S7)

1 for i, state in enumerate(states_):
2 context = state.append(previous[i])
3 for c in alphebt¶

1 INCODER_PREDICTION: ree(self.alphabet):
2 UNIXCODER_PREDICTION: s(state):
3 CODEGPT_PREDICTION: .get_coding_handlers(context):
4 GROUND_TRUTH: symbols(state):

Figure 11: Rejected prediction: Typographical errors in in-
put (AE-4) and mid-token invocation (AE-1)

Faulty Syntax. All models exhibited low incorrect syntax rates
(ME-S7), with a few notable cases. ME-S7 is highly correlated (31%)
with poor performance in requesting completions in the middle of
tokens (AE-1), indicating potential sensitivity to out-of-distribution
samples from partial identifiers. Figure 10 shows a completion re-
quest for which all models predict an assignment instead of equal-
ity in the if statement.

6.5.2 Application-oriented. Approximately 42% of completion re-
quests are labeled with errors related how models are applied in
practice and how that can lead to sub-optimal performance.

Mid-token Invocation. Models use tokenizers based on frequently
occurring byte pairs as their smallest unit.This causes problems if a
model is called in themiddle of a token, as it would generate an out-
of-distribution token at that location (AE-1). Our analysis shows in
34%, 23%, and 10% of cases, AE-1 co-occurs with incorrect variable
names, function names, and literals, respectively. Figure 10 shows
an example where models struggle to accurately disambiguate the
meaning of the equals sign. This challenge is also applicable in lan-
guages such as JavaScript or TypeScript, where both == and === are
employed for equality comparison, albeit with distinct functional-
ities.

Insufficient Context. Given that models use only the present file
as predictive context, its content is crucial. Yet, often, context insuf-
ficiency causes errors (AE-2) in 482 predictions. For instance, early
in a file, models often require importing code from specific files.
This leads to a high correlation (31.3%) between AE-2 and ME-T3
labels.

Redundant Invocation. These are the cases where the models are
unnecessarily invoked (AE-3), e.g., in a positionwhere both correct
left and right contexts already exist. We attribute this to both user
behavior and implementation factors.

Typographical Errors in Input. Models also struggle when there
are misspellings or mistakes in the left-context (AE-4). Figure 11
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Figure 12: ROUGE-L per language (random strategy)

presents an example where a typo in “alphebt” and a mid-token
trigger cause inaccurate function prediction.

6.5.3 User-overridden Outputs. In these cases, users override the
models’ suggestions.

Correct but not accepted. Interestingly, the user does not always
accept predictions even when they are correct (UO-1). In 605 pre-
dictions, the ground truth matched the generated predictions ex-
actly. When examining the prediction types, we found that for 163
predictions (comprising 102 partial line completions and 61 line ed-
its), there was context to the right of the prediction location that
the UniXcoder and CodeGPT models could not have taken into ac-
count, potentially leading to overwriting. Users might also choose
a completion from a competing tool, which is beyond our control.

Valid but not Preferred. In certain cases, although the prediction
did not precisely match the ground truth, it would be a valid pre-
diction if accepted (UO-2). The reason is likely attributed to style
preferences that are currently not accounted for in the models.

Accepted but Required Change. In certain cases, the selected pre-
diction does not perfectly match the ground truth (UO-3). In 22%
of instances, variable modifications occurred, 13% involved literal
changes, 6% witnessed function name alterations, and 9% entailed
parameter count adjustments.

6.6 RQ5: Offline Evaluation
We report the average ROUGE-L per language for the random and
trigger point test sets in Figures 12 and 13. We also report ROUGE-
L per trigger point for the trigger point test set in Figure 14.

Performance per Language. Eachmodel behaves differently across
languages in random and trigger point tests. UniXcoder andCodeGPT,
trained on identical code datasets, perform similarly in all languages.
However, InCoder, trained on a larger and more diverse corpus,
outperforms the rest. Its proficiency is also boosted by utilizing
both left and right contexts, which can be helpful, especially in the
first few lines of a file with less left but more right context.

Impact of Masking Strategy. Based on the results, models ex-
hibit similar performance across both test sets. However, the main
difference is that the trigger point test set yields slightly lower

Figure 13: ROUGE-L per language (trigger point strategy)

Figure 14: ROUGE-L per trigger point

ROUGE-L for UniXcoder andCodeGPT,whereas InCoder performs
better on this test set. These differences are especially strong when
considering Exact Match.

Comparison to Online Evaluation. Both offline test sets result in
a gross overestimation of the performance of the models. While
InCoder did not exceed 40 ROUGE-L for any individual language
in the online evaluation, the offline evaluation shows a maximum
ROUGE-L of over 60 in both the random and trigger point strate-
gies.Metric values are similarly inflated for UniXcoder andCodeGPT,
which score higher than 30 ROUGE-L in only two languages in
the online setting, but achieve this for all languages in the offline
setting. Though offline results are much higher than correspond-
ing online ones, offline evaluation still holds value due to correct
model rankings, i.e., InCoder followed by UniXcoder and CodeGPT.
However, performance per language may not align with online set-
tings, with slight differences in both test sets.

Performance per Trigger Point. Some models have proficiency
gaps at certain trigger points, however, using random trigger points
for auto-completion may not mimic programmers’ actions well.
Figure 14 shows ROUGE-L scores for three models post different
trigger points. These outcomes differ greatly from our online eval-
uation results (Figure 5). Once again we observe that offline results
are higher than the corresponding results from the online setting.
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However, performance per trigger point also varies between on-
line and offline evaluations. In online evaluation, InCoder excels
at the return trigger point, while offline shows the three models
are closely competitive. Additionally, the offline evaluation shows
that the > trigger point yields very good performance while this
is not the case in the online evaluation. These dissimilarities show
that even a test set created based on trigger points does not per-
fectly match a realistic programming environment. This may be
due to the fact that offline datasets often contain complete code,
meaning there may be more useful code context available than in
cases where a developer is actively creating and editing new code.

7 DISCUSSION
Below, we briefly discuss the key shortcomings of existing code
completion solutions.

7.1 Current Limitations
7.1.1 Models and Training Shortcomings. Based on RQ4 results, on
average for all models, around 66% of failures (excluding discarded
requests), arose from model shortcomings such as inaccurate iden-
tifiers and types, semantic or syntactic errors, and untimely ter-
mination. Developers employ proper identifier names to enhance
code comprehension and maintenance, however, existing models
face difficulty in generating suitable names that reflect code func-
tions and intentions due to their underlying training to predict
plausible subsequent tokens, not in understanding code as devel-
opers do. Their current limitations also include inadequate knowl-
edge of the codebase, hindering their ability to examine it, identify
components, and comprehend their relationships to improve gen-
erations. Moreover, the practice of writing names and comments
can vary greatly among developers, and a model trained on a di-
verse range of code may have difficulty learning a consistent or
useful strategy for generating them.This could lead to suggestions
that are confusing or unhelpful for developers.

7.1.2 Disparity between Theory and Application. About 24% of the
failures are attributed to a misalignment between the models’ prac-
tical application and their training objectives. The most prevalent
instance, accounting for 58% of such cases, is the inappropriate
invocation of models, either manually or automatically, at unsuit-
able locations like in themiddle of identifiers or operators, creating
new out-of-distribution tokens as input to the models. The amount
and quality of context also impact these models’ generations, with
around 24% of instances supplying limited context, and 7% provid-
ing context with typos or syntax errors. The average left and right
context length in our online data are 299 and 154 tokens. For ex-
ample, relevant context might not be readily available within the
file, such as functions on imported objects or a utility class with
global functions. Additionally, RQ3 showed bidirectional models,
need tomodify the right context for the prediction to properly fit in
the context. This necessity typically stemmed from brackets auto-
inserted by code editors or extensive code rewrites. As anticipated,
brief, poor-quality, faulty, misaligned code contexts from live code
can result in substandard recommendations.

7.1.3 Insufficient and Unrealistic Evaluation Settings. Our quanti-
tative analysis reveals a gap in accuracy between online and offline

settings. Differences may stem from the training datasets, evalua-
tion strategy (random token masking versus post-invocation com-
pletion), developer real-world interactionswith the completion sys-
tems, individual decision-making processes, and developers’ per-
sonal preferences, among other factors. For instance, the context
and code quality authored by an average developermay differ from
those present in the refined benchmark or proprietary datasets
used in some offline evaluations. Additionally, offline data typi-
cally contain more valuable context than live development where
limited context is available. In RQ5, offline evaluations did not
match our online ones, making it a challenge to achieve equivalent
results with both settings. Our analysis also indicates that defin-
ing successful predictions is complex. Both our research and prior
studies [50] demonstrate that even accepted suggestions may not
persist in a codebase as developersmay initially accept a prediction
and later alter it significantly. This leads to the challenge of deter-
mining the correct timing for prediction validation. Finally, RQ4
showed that in 78% of cases where developers tend to override the
recommended completions (UO-1), the predictions are correct and
match the ground truth exactly. Valid but not preferred comple-
tions (UO-2) are 15% of cases and in 7% of instances, the user opts
for a completion that requires editing before it can be incorporated
into the code (UO-3). Deciphering developers’ intent from code
can be tough due to its complexity and individual coding styles.
Moreover, predictions may not match the ground truth but can be
semantically consistent with the code and acceptable. While qual-
itative analysis can help, it is not a scalable solution.

7.2 Recommendations
Examining the outcomes and unresolved issues based on our anal-
ysis allows us to suggest several potential research directions.

7.2.1 Align Model Training with Practice. We propose adjusting
auto-completion’s training objective to decrease the granularity of
masked units (e.g., characters), as well as adding partial comple-
tions, and editing capability to models. Intentionally adding bugs
or small perturbations on a character level can improve perfor-
mance in the presence of bugs, typos, and syntactic inconsistencies
in the inputs. Next, oversampling less frequent triggers can repair
the difference in performance at these points. Aligning with the ex-
pected use case can improve model performance, meet developers’
preferences for intuitive auto-completion tools [42], and enhance
real-time application robustness. To address the performance gap
among different languages as highlighted in RQ1, RQ2, and RQ5,
we recommend further research on cross-language training, iden-
tification of unique linguistic elements, and the incorporation of
low-resource languages. Finally, exploring additional model archi-
tectures for this task could yield intriguing results.

7.2.2 Reduce Model Rambling. Overcoming rambling (ME-S5 and
ME-S6) is a significant challenge in NLP. Methods like modify-
ing the training process, using more sophisticated decoding strate-
gies, introducing penalties during the generation process, or post-
processing the generated text to remove repetitions or copied con-
text are among the potential solutions. For instance, setting the
model’s temperature parameter to a higher value can make it less
deterministic with respect to patterns from the input.Finally, using
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reinforcement learning, one can penalize the model for copying in-
put directly and reward it for generating more original responses.

7.2.3 Enrich the Context. Relying solely on a language modeling
approach for code completion presents certain limitations. For in-
stance, it can be challenging for a model to predict user-defined
types and uncommon or new APIs if they are not included in the
training data (ME-T1, ME-T2, ME-T4). Additionally, if there is in-
sufficient context within the current file, the model may struggle
(AE-2). Enriching model input with additional details, e.g., avail-
able functions and imported classes could help themodel better un-
derstand the context. Therefore, integrating LMs with more struc-
tured methods, such as symbolic reasoning, or incorporating data
from static analyses and local context including project context
(scale and domain), system context (e.g., languages and deploy-
ment environments), and personal context (e.g., expertise) can lead
to more accurate modeling of user needs and higher code quality.
Post-processing generations also reduce syntactic issues (ME-S7).

7.2.4 Smart Invocation. RQ2 and RQ4 findings highlight different
issues with model invocation. To tackle issues with automatic mid-
token invocations (AE-1) and redundant activation (AE-3), we can
equip both models and code editors with a smart invocation ca-
pability to selectively offer suggestions. Studying developer inter-
action data with code editors can lead to identifying the most ap-
propriate moments to automatically invoke auto-completion. Ad-
ditionally, models should refrain from suggestions if unsure about
their predictions. This will reduce noise and ensure that only rele-
vant, high-confidence suggestions are presented to the developer.

7.2.5 Improve Usability and Customization. We recommend using
multi-suggestion functionality (variety of viable completions) to
repair valid but not accepted completions (UO-2) potentially lead-
ing to a higher acceptance rate (RQ1). While personalized recom-
mender systems and better user interfaces can improve acceptance,
further studies are needed to fully comprehend the underlying rea-
sons for overwritten completions (UO-1, UO-2, UO-3).

7.2.6 Improve Evaluation Settings. The challenges of evaluating
code completion systems are multifaceted including issues related
to proper metrics, defining ground truth, developers’ individual
preferences, and their ability to alter the generated code. Strict met-
rics like acceptance rate can undervalue a model’s worth, while
fuzzy metrics (e.g., BLEU and ROUGE) overlook semantic equiv-
alence, resulting in underestimation. Moreover, traditional offline
evaluations fail to accurately assess the performance of these sys-
tems (RQ5). Online evaluations aim to address some of these short-
comings by evaluating models’ performance in more realistic cod-
ing conditions. However, RQ4 showed that some correct comple-
tions are still rejected by developers (UO-1). Hence, an effective
evaluation requires establishing a reliable ground truth and a bet-
ter understanding of developers’ needs. RQ3 has demonstrated that
programmers employ models under varying scenarios, such as left-
to-right completion or editing tasks which should be considered in
the evaluation. Lastly, future work can explore the differences be-
tween the performance of IDE extensions and third-party tools.

7.3 Threats to the Validity
Threats to internal validity, such as model hyperparameters and
implementation errors, could impact our study’s results. We uti-
lized public checkpoints of three LMs provided in replication pack-
ages. We have tested our implementation and chosen hyperparam-
eters carefully, however, more optimal hyperparameters may exist.
To reduce the impact of undetected errors in the code, we publish
our source code and dataset to enable other researchers to replicate
and extend our work. To minimize subjectivity bias, four authors
participated in open coding. In every round, at least two authors in-
dependently annotated samples using available code context. Any
arising conflicts were subsequently resolved through discussion.
These processes increase our confidence in the taxonomy, how-
ever, as subjectivity is unavoidable in qualitative analysis, further
large-scale studies can refine or verify our taxonomy.

Threats to external validity include dataset quality and result
generalizability. For enhancing generalizability, we utilize three
public code LMs with different training objectives and architec-
tures, and 12 programming languages based on the literature [13].
This allows representation across a diverse set of models and lan-
guages. In offline evaluation, we utilized and deduplicated a stan-
dard dataset [13] to prevent data leakage from the training data [51].
For fine-tuning CodeGPT on multilingual data, we used another
common benchmark dataset [20]. A potential concern is that the
Code4Me user base may not reflect the broader programming com-
munity. To address this, we have ensured extensive distribution of
our tool to expand our user base over a year. We believe it miti-
gates the potential bias, resulting in a representative dataset. Yet,
further studies can verify and generalize our findings to more data,
models, languages, and users.

Construct validity threats relate to the appropriateness of our
metrics. To evaluate Code4Me, we use a diverse set of widely-used
metrics from the literature [1, 7, 34, 35, 50, 52], however, due to
space constraints, we only report ROUGE-L and acceptance rates
here, with the rest available in our replication package [22].

8 CONCLUSION
In this paper, we evaluate the use of Transformer-based models for
code completion in a practical setting. To this end, we developed
Code4Me, an open-source completion extension that canworkwith
three popular LMs. Over the course of a year, we collected over
600K valid completions from 1,200 developers. Our empirical anal-
ysis demonstrates that language popularity, trigger points, and com-
pletion scenarios substantially affect accuracy.Moreover, the preva-
lent use of offline evaluations in existing research tends to paint
an overly optimistic picture of the current auto-completion capa-
bilities. Our findings suggest a need for a focused study on auto-
completion that considers real-world applications, as well as train-
ing LMs that better align with the needs of developers.
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